Bifurcation and Stability of Two-Dimensional Activator–Inhibitor Model with Fractional-Order Derivative

نویسندگان

چکیده

In organisms’ bodies, the activities of enzymes can be catalyzed or inhibited by some inorganic and organic compounds. The interaction between these compounds is successfully described mathematics. main purpose this article to investigate dynamics activator–inhibitor system (Gierer–Meinhardt system), which utilized describe interactions chemical biological phenomena. considered with a fractional-order derivative, converted an ordinary derivative using definition conformable fractional derivative. obtained differential equations are solved separation variables. stability positive equilibrium point analyzed discussed. We find that locally asymptotically stable, source, saddle, non-hyperbolic under certain conditions. Moreover, concentrates on exploring Neimark–Sacker bifurcation period-doubling bifurcation. Then, we present numerical computations verify theoretical results. findings work show governing undergoes These types occur in small domains, as shown theoretically numerically. Some 2D figures illustrated visualize behavior solutions domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

Stability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community

In  this  paper a  non-linear  model  with  fractional  order  is  presented  for  analyzing  and  controlling the  spread  of  HIV virus.  Both  the  disease-free  equilibrium and the endemic equilibrium are  found  and  their  stability is  discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential  role in the stability of  the ...

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7050344